YBa(Cu_{1.10}Co_{0.90})O₅, Prepared from YBa₂Cu₃O₇

GRAEME J. GAINSFORD,^a J. L. TALLON^a AND C. T. LIN^b

^aThe New Zealand Institute for Industrial Research and Development, PO Box 31-310, Lower Hutt, New Zealand, and ^bMax-Planck-Institut fur Festkorperforschung, Heisenbergstrasse 1, D-70569, Stuttgart, Germany. E-mail: g.gainsford@irl.cri.nz

(Received 10 April 1997; accepted 30 July 1997)

Abstract

The title compound, yttrium barium copper cobalt oxide, was grown from YBa₂Cu₃O₇ crystals by a modified flux method. The 1,1,2 (Y:Ba:Cu,Co shared) structure is closely related to the parent 1,2,3 structure. The apical O atom in the distorted square pyramid is closer to the Cu,Co site [2.008 (1) Å] than in the parent compound, reflecting the higher average oxidation state, while the basal O atoms are further from the Ba²⁺ cation [3.057 (2) Å].

Comment

Many studies performed on the use of dopants such as Co, Fe, Ni, Zn, Cr and Al in high-temperature superconductors have been aimed at understanding the structural changes, antiferromagnetic and electronic properties of the materials (see, for example, Westerholt *et al.*, 1989) as well as the effect of electronic scattering. We chose to start from high-quality single crystals of known composition, namely the 1,2,3 compound YBa₂Cu₃O_{7-x} (YBCO). Single crystals of a 1,1,2 structure [YBa(Cu_{1.10}Co_{0.90})O₅] were grown by a modified flux growth method; details of the synthesis and initial characterization are given by Lin *et al.* (1991). A recent report of this 'new' 1,1,2 phase, with composition YBaMn₂O₅, is given by Attfield *et al.* (1996).

The four layer BaO–(Cu,Co)O₂–Y–(Cu,Co)O₂ structure of the title compound was determined at 124 K and confirms that proposed by Lin *et al.* (1991). The relationship to the parent 1,2,3 YBCO structure, namely, formation by removal of one BaO layer and the socalled CuO 'chain' layer, is illustrated in Fig. 1.

The mixed-site Cu,Co atoms (with 4mm symmetry) bind five O atoms forming a distorted square pyramid with the Cu,Co atoms 0.354 (3) Å from the basal plane. The Cu,Co—O distances are much closer to each other [1.9733 (7) \times 4, 2.008 (1) Å] than those observed in the parent YBCO structure: for the latter in a typical *Pmmm* structure (Francois *et al.*, 1988) the values are 1.923 (1), 1.958 (1), 2.283 (2) Å at 110 K and for a high-

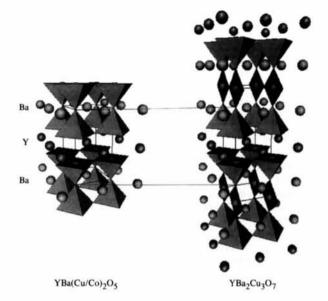


Fig. 1. View showing the relationship between the unit cells of $YBa(Cu_{1,10}Co_{0,90})O_5$ and 'parent' $YBa_2Cu_3O_7$ (Fischer *et al.*, 1990) with the *c* axis vertical. O atoms (not shown) are at the corners of the shaded square pyramids around the mixed Cu,Co sites.

temperature P4/mmm structure at 373 K (Hewat *et al.*, 1987) they are 1.944 (0) and 2.503 (5) Å. This move to a more regular square-pyramidal geometry is also suggested by values of 1.93 and 2.09 Å used by Geremia *et al.* (1989) for the pure cobalt 1,2,3 modelling. The shortening of the apical oxygen bond length reflects the higher average oxidation state at the mixed Cu^{II},Co^{III} site. There is also a concomitant lengthening of the 12-coordinate Ba—O(basal plane) distances [3.057 (2) Å × 8], compared with 2.952 (2) and 2.976 (2), 2.929 (3) Å in the respective YBCO structures.

Both of these changes were observed in YBaMn₂O₅ (Attfield *et al.*, 1996): there the Mn—O distances are 2.002 (2) and 2.004 (5), and Ba—O is 3.098 (5) Å. The Mn atom is 0.396 Å from the basal plane. It was not possible to model Co^{III},Cu^{II} ordering without further magnetic measurements, parallel to that proposed for Mn^{II},Mn^{III} in YBaMn₂O₅ on the basis of ferromagnetic ordering. The Y—O contact distance is similar to that in YBCO prepared under both high and low pressure (*e.g.* 2.405, 2.382 Å; Francois *et al.*, 1988).

Experimental

The crystal was grown by a modified flux method outlined in detail by Lin *et al.* (1991).

Crystal data

 $YBa(Cu_{1.10}Co_{0.90})O_5$ M_r = 429.18 Mo $K\alpha$ radiation $\lambda = 0.71069$ Å

Tetragonal	Cell parameters from 22
P4/mmm	reflections
a = 3.8827 (10) Å	$\theta = 21-50^{\circ}$
c = 7.546 (2) Å	$\mu = 29.4 \text{ mm}^{-1}$
$V = 113.75 (5) Å^3$	T = 124 (2) K
Z = 1	Irregular plate
$D_{c} = 6.265 Mg m^{-3}$	$0.30 \times 0.20 \times 0.01 \text{ mm}$
$D_x = 6.265 \text{ Mg m}^{-3}$	$0.30 \times 0.20 \times 0.01$ mm
$D_m \text{ not measured}$	Lustrous black

245 reflections with

 $I > 2\sigma(I)$

 $R_{\rm int} = 0.0387$

 $\theta_{\rm max} = 39.9^{\circ}$

 $h = -1 \rightarrow 7$

 $k = -1 \rightarrow 7$

 $l = -1 \rightarrow 13$

3 standard reflections

every 97 reflections

intensity decay: none

Data collection

Siemens P4 four-circle diffractometer ω scans Absorption correction: ψ scan (XEMP; Sheldrick, 1984) $T_{\min} = 0.066, T_{\max} = 0.779$ 682 measured reflections 254 independent reflections

Refinement

Refinement on F^2	$\Delta \rho_{\rm max} = 3.09 \ {\rm e} \ {\rm \AA}^{-3}$
$R[F^2 > 2\sigma(F^2)] = 0.028$	$\Delta \rho_{\rm min} = -3.08 \ {\rm e} \ {\rm \AA}^{-3}$
$wR(F^2) = 0.064$	Extinction correction:
S = 1.316	SHELXL96 (Sheldrick,
254 reflections	1996)
17 parameters	Extinction coefficient:
$w = 1/[\sigma^2(F_o^2) + (0.0370P)^2]$	0.061 (8)
+ 0.0088P]	Scattering factors from
where $P = (F_o^2 + 2F_c^2)/3$	International Tables for
$(\Delta/\sigma)_{\rm max} = 0.002$	Crystallography (Vol. C)

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $(Å^2)$

 $U_{eq} = (1/3) \sum_{i} \sum_{i} U^{ij} a_{i}^{*} a_{i}^{*} a_{i}$

	$\operatorname{eq} = (1/3) \operatorname{eq} (1/3) \operatorname{eq} (1/3)$					
	x	у	z	U_{cq}		
Ba	1/2	1/2	0	0.01124 (15)		
Y	1/2	1/2	1/2	0.00696 (15)		
Cul†	0	0	0.73395 (12)	0.0134 (2)		
Co1‡	0	0	0.73395 (12)	0.0134 (2)		
01	0	0	0	0.0132 (8)		
O2	1/2	0	0.6871 (4)	0.0101 (4)		

 \ddagger Site occupancy = 0.55 (3). \ddagger Site occupancy = 0.45 (3).

Table 2. Selected geometric parameters (Å, °)

Ba—O1 Ba—O2 ⁱ Y—O2	2.7455 (7) 3.057 (2) 2.4002 (16)	Cu1—O2 Cu1—O1"	1.9733 (7) 2.0075 (10)
O2 ⁱⁱⁱ —Cu1—O2 O2 ^{iv} —Cu1—O2 O2—Cu1—O1 ⁱⁱ	159.34 (17) 88.16 (3) 100.33 (8)	Cul ^v OlCul ^v Cul ^{vii} O2Cul	180.0 159.34 (17)

Symmetry codes: (i) x, 1 + y, z - 1; (ii) x, y, 1 + z; (iii) x - 1, y, z; (iv) -y, x, z; (v) - x, -y, 1 - z; (vi) x, y, z - 1; (vii) 1 + x, y, z.

The composition of the mixed Cu,Co site was determined by refinement (Sheldrick, 1996) with common positional and displacement parameters and a total unit-cell content of 2 [Cu 1.10(5), Co 0.90(5)]. The final maximum difference peaks are less than 0.6 Å from the Ba atom and are expected to reflect errors introduced by the absorption correction and crystal quality. The ψ scan absorption method (Sheldrick, 1984) was used because the crystal shape, and its smallest dimension, precluded accurate measurement and boundaryedge definitions.

Data collection: XSCANS (Fait, 1991). Cell refinement: XS-CANS. Data reduction: XSCANS and SHELXTL (Sheldrick, 1984). Program(s) used to solve structure: SHELXS90 (Sheldrick, 1990). Program(s) used to refine structure: SHELXL96 (Sheldrick, 1996). Molecular graphics: STRUPLO (Fischer et al., 1990). Software used to prepare material for publication: SHELXL96 CIFTAB.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: TA1169). Services for accessing these data are described at the back of the journal.

References

- Attfield, J. P., Chapman, J. P., Molgg, M., Friend, C. M. & Beales, T. P. (1996). Angew. Chem. Int. Ed. Engl. 35, 2482-2484.
- Fait, J. (1991). XSCANS Users Manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Fischer, R. X., Le Lirzin, A., Kassner, D. & Rudinger, B. (1990). STRUPLO. Mineralogisches Institute, Am Hubland, D-8700 Wurzburg, Germany.
- Francois, M., Junod, A., Yvon, K., Hewat, A., Capponi, J. J., Strobel, P., Marezio, M. & Fischer, P. (1988). Solid State Commun. 66, 1117-1125.
- Geremia, S., Nardin, G. & Mosca, R. (1989). Solid State Commun. 72, 333-336.
- Hewat, A. W., Capponi, J. J., Chaillout, C., Marezio, M. & Hewat, E. A. (1987). Solid State Commun. 64, 301-307.
- Lin, C. T., Li, S. X., Zhou, W., Mackenzie, A. & Liang, W. Y. (1991). Physica C, 176, 285-294.
- Sheldrick, G. M. (1984). SHELXTL Users Manual. Revision 4.1. Nicolet XRD Corporation, Madison, Wisconsin, USA.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1996). SHELXL96. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
- Westerholt, K., Wuller, H. J., Bach, H. & Stauche, P. (1989). Phys. Rev. B, 39, 11680-11689.

Acta Cryst. (1997). C53, 1730-1733

The First Cadmium Rare Earth Borates $CdLn[B_5O_{10}]$ with Ln = La, Sm, Eu

ANDRE WIESCH AND KARSTEN BLUHM

Institut für Anorganische Chemie, Christian-Albrechts-Universität Kiel, Otto-Hahn-Platz 6/7, 24098 Kiel, Germany. E-mail: kbluhm@email.uni-kiel.de

(Received 22 January 1997; accepted 2 June 1997)

Abstract

Single crystals of the new compounds CdLn[B₅O₁₀] $(Ln = La^{3+}, Sm^{3+}, Eu^{3+})$ were obtained in silver ampoules at 1073 K by using a B_2O_3 flux technique.